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Turbulent characteristics of the flow 
in an axially rotating pipe 
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This study examines the effects of the swirl driven by a rotating pipe wall on turbulent flow 
characteristics. Velocity measurements were performed at Reynolds number Re=20000 
using a single-component laser-Doppler velocimetry (LDV) operated in forward scatter. The 
test apparatus was refractive index matched, allowing measurement of the turbulent 
fluctuation velocities and Reynolds shear stresses of the flow in an axially rotating pipe. 
The results indicate that the intensity of turbulence in the rotating pipe decreases gradually 
with an increase in pipe rotation due to the stabilizing effect of the centrifugal force. The 
Reynolds shear stresses decrease markedly as compared with turbulence intensity, and 
momentum transfer by turbulence is suppressed strongly in the rotating pipe. Based on the 
experimental results, the relationship between the reduced mixing length and Richardson 
number is verified for the turbulent flow in the rotating pipe. Data on skewness and 
flatness factors, time records of velocity fluctuation, and their power spectra are also 
presented and show the change in turbulence structures. 

Keywords: turbulence; pipe flow; swirling flow; Reynolds stress; laser-Doppler velocimetry; 
rotating pipe 

Introduction 

When a pipe flow is subjected to axial rotation, a tangential 
velocity component is given to the flow by the moving wall, and 
the velocity distribution and turbulent characteristics of the flow 
differ from those observed in a stationary pipe. Experimental 
data about these swirling flows are important for code validation 
and of value as references for the inlet flow of fluid machines. 

Hydraulic losses and mean velocity profiles of the flow in an 
axially rotating pipe have been studied by several investigators, 
including the present authors. Experimental results showed that 
pipe rotation had two countereffects on the flow, stabilizing or 
destabilizing. When the Reynolds number is small and the flow is 
laminar, pipe rotation destabilizes the flow, and the spiral waves 
appear (Imao et al. 1989, 1992). On the other hand, pipe rotation 
has stabilizing effects in the turbulent region, in which the 
reduction in the hydraulic loss and the deformation of the axial 
velocity profile into a shape similar to the laminar one were 
obtained by White (1964), Murakami and Kikuyama (1980), and 
Imao (1981). The present study is concerned with the latter effect 
in the turbulent region. 
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For turbulent boundary layers developed in an axially rotating 
pipe, Kikuyama et al. (1983a) measured the time-mean velocities 
and Reynolds stress components by the use of hot wire probes 
and showed that the intensity of turbulence in the rotating pipe 
decreased ultimately below that in a stationary pipe. Kikuyama et 
al. (1983b) applied the mixing length model modified by the 
Richardson number to predict the laminarization phenomena of 
swirling flow in the rotating pipe. Numerical computations were 
made by Hirai et al. (1988) applying three kinds of turbulence 
models, and the computations were compared with the experi- 
ments in terms of mean velocity profiles. To help explain the 
behaviour of the stabilizing process due to the swirl, and to 
examine the applicability of the turbulence models to the swirling 
flow, it is desirable to obtain systematic data including velocity 
distributions and stress components of the fully developed flow 
in an axially rotating pipe. However, turbulent characteristics of 
this flow have never been measured and are, therefore, unknown. 
The present authors measured mean velocity profiles, distribu- 
tions of five components of the Reynolds stress, and velocity 
fluctuations and their power spectra of the flow in an axially 
rotating pipe by the use of a laser-Doppler velocimeter (LDV). 
In the present study, the refractive index of the working fluid was 
matched with that of the acyclic rotating pipe, which enabled us 
to measure velocity and stress components accurately. Using the 
experimental results, the relationship between the mixing length 
and Richardson number proposed by Bradshaw (1969) was exam- 
ined. The results obtained here give useful data for investigators 
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studying the swirling flow. Some of them also have ramifications 
for the general problem of transition and turbulent structure. 

Experimental apparatus and procedure 

Figure 1 shows the experimental apparatus. A circulation system 
was employed, and a honed stainless pipe of 30.0-mm inside 
diameter was used for the rotating pipe. The fluid discharged 
from a centrifugal pump was introduced into the rectifying 
section through a 180 ° bend. After the tangential velocity compo- 
nent was eliminated, and the flow was made homogeneous over 
the inlet section of the rotating pipe by screens, the flow was 
throttled by the nozzle in a ratio of 11:1, which made the 
velocity profile at the inlet section of the rotating pipe almost 
uniform. The distance from the pipe inlet to the measuring 
section could be changed by moving the rectifying section. Fig- 
ures 2(a) and (b) show the LDV system and the measuring 
section. The measuring section was composed of an acrylic pipe 
with the same inside diameter as the stainless pipe, and it was 
enclosed in an outer, square-sided containment vessel. The vol- 
ume between the measuring section and the outer containment 
was filled with a working fluid, which was selected to have a 
refractive index equal to that of the acrylic pipe. The match of 
refractive indices was achieved by controlling the concentration 
of sodium iodide (NaI) water solution. If the refractive index of 
the working fluid differs from that of the pipe, it is impossible to 
measure turbulent shear stresses and a radial velocity component 
near the wall by a one-component LDV. Figure 2(c) shows how 
to measure tangential and radial velocity components. A micro- 
computer and pulse motors were used to move the optical system 
horizontally and vertically in the cross section. The LDV used 
here was a one-component, forward scatter system, operating 
with a He-Ne laser. The focal length is 120 mm, and the 
dimensions of the measuring volume, which is ellipsoid, are 0.5 
mm in the laser light axis direction and 0.1 mm in the normal 
direction. Concerning the spatial resolutions, it differs a little by 
the orientation of the measuring volume of the LDV. However, 
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Figure I Schematic  outline of experimental  apparatus 
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Figure 2 (a) LDV system. (b) Details of measuring section. 
(c) Measurement of tangential and radial velocity compo- 
nents 

when the axial velocity components were measured in the hori- 
zontal plane and in the vertical plane, respectively, and were 
compared, there was little difference between them. Moreover, 
in this study there did not exist a steep velocity gradient so that 
the velocity component changed considerably in the measuring 
volume. Therefore, the difference in the spatial resolution is 
regarded as negligible. A single Brag cell was used to provide a 
net frequency shift. To measure velocity components by a one- 
component LDV, a laser beam plane (i.e., measuring plane) was 
rotated at 0 °, + 45 °, 90 ° orientations about the optical axis. Thus, 
Reynolds stress components u 2, U 2, W 2, H--W, and u--/; could be 
obtained in addition to axial, tangential, and radial components 

Notation 

D 
k 
l 
N 
q2/2 
r 

R 
Re 
Ri 
U,V 

pipe diameter, 30.0 mm 
wave number 
mixing length 
rotation rate, Vw/U m 
kinetic energy of turbulence, (u 2 + v 2 + w2)/2 
radial distance 
pipe radius, D / 2  
axial Reynolds number, DUm/v 
Richardson number defined by Equation 3 
time-mean velocity components in the z and 0 
directions, respectively 

U,U,W 

Um 
Vw 
Z 

Greek 

X 
1) 

fluctuating velocity components in the z, 0, and r 
directions, respectively 
mean axial velocity 
tangential speed of the rotating pipe 
axial distance from the inlet section of the rotating 
pipe 

parameter in Equation 2 
friction factor 
kinematic viscosity of fluid 
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Figure 3 Coordinate system and velocit ies 

of velocity. The LDV signals were processed using a counter-type 
processor. In general, signals obtained by LDV cannot be re- 
garded as continuous data. In this study, however, the particle 
arrival rate was sufficiently high (always larger than 1000 I / s )  for 
the signals to be regarded as continuous. Therefore, the digital 
output of the counter-type processor was once D / A  converted, 
and then the analog data were sampled with sampling frequency 
1 kHz by A / D  converter, and data output was transferred to the 
memory of a microcomputer for analysis. Measurements were 
made for the axial Reynolds number Re = 20,000 and for the 
range of rotation rate 0 < N < 1 at z/D = 120. The coordinate 
system is shown in Figure 3. The method's of Kline and McClin- 
tock (1953) was used to estimate the uncertainty for the mea- 
surements, and are given in the captions at the 95% confidence 
level. 

Experimental results and discussion 

Mean velocity prof i les and fr ict ion factor 

We measured mean velocity profiles at six cross sections; i.e., 
z/D = 30, 60, 90, 120, 160, 180, before this study. The results 
showed that the profiles remained unchanged downstream of 
z/D = 120, so we confirmed that the flow had been fully devel- 
oped at z/D = 120 under the conditions examined here. Figure 4 
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Figure 4 Time-mean velocity profiles (uncertaint ies in r/R 
are +1%,  and in U/U m and V/Vw are _+2%) 

shows velocity profiles at Re = 20000, z/D = 120. In this figure, 
axial and tangential velocity components and radial positions are 
made nondimensional by mean axial velocity, tangential speed of 
the rotating pipe, and pipe radius, respectively. When the pipe is 
rotated, axial velocity increases near the center and decreases 
near the wall, and the axial velocity profile gradually approaches 
a laminar shape with an increase in rotation rate, due to a 
stabilizing effect. The tangential velocity profile is not a forced- 
vortex type, but a concave one close to a parabolic curve V/V w = 
(r/R) 2, even when the flow is fully developed. Similar results 
obtained by Imao (1981), Kikuyama et al. (1983b), Hirai et al. 
(1988), and Prandtl (1930) have suggested that a parabolic tan- 
gential velocity profile is a stable one from the viewpoint of the 
kinetic energy balance in the swirling flow. The fact that such a 
concave profile exists means that the tangential shearing stress is 
acting on the pipe wall even when the flow is developed. 

Friction factors at Re = 20000 are shown in Figure 5. The 
friction factor h is defined as 

h = A P / ~ D  2 1' 

where Ap is the pressure drop between the two pressure tap- 
pings situated at z/D = 120 and 180. Pressure tappings were 
provided in a narrow stationary ring 5-mm in length between two 
rotating sections (Imao et al. 1992). When the pipe is rotated, the 
h values are smaller than those for stationary pipe, and they 
become smaller with an increase of N. The reduction in k is 
20% at N = 0.5, and 40% at N = 1, respectively, compared with 
the nonrotating state. 

Reynolds stresses 

Before the measurement of stress components in the rotating 
pipe, we performed a preliminary measurement of Reynolds 
stress of turbulent flow in a stationary pipe to check the mea- 
surement accuracy. The measured stress components were com- 
pared with the data obtained by Laufer (1954) and Lawn (1971) 
in Figure 6. In this figure, U T is the friction velocity calculated 
from the measured value of pressure drop. The agreement be- 
tween the stress components measured in this study and those 
obtained by Laufer or Lawn was satisfactory, which demonstrates 
the accuracy and reliability of the present measurement. Figure 7 
shows the distributions of turbulence intensity. It may be seen 
that every component of turbulent intensity decreases with an 
increase in rotation rate, although the rate of reduction is not so 
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Figure 5 Friction factor (uncertaint ies in N and k are +_0.5% 
and _+ 3%, respectively) 
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remarkable. Among the three components y/-~, V/~ ,  and ~/ -~ ,  
the rate of reduction in the radial component is the largest, 
which means that the pipe rotation most markedly suppresses the 
radial component of turbulent fluctuation. In this paper, U m is 
used instead of U T as the parameter for normalization. The 
reason for it is as follows. When the pipe is rotated, the flow is 
stabilized, and the friction loss is not as great with rotation as it 
is without rotation, which corresponds to the decrease in the 
value of U,. If U~ is used for normalization, the normalized 
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Reynolds stress components in the rotating pipe become large, 
and it is impossible to look into the effect of pipe rotation 
directly. In addition, there exists tangential shearing stress in the 
rotating pipe, as mentioned earlier. Under these circumstances, 
it is not clear whether U~ should be used for the velocity scale as 
the case in stationary pipe. Therefore, U,~ is used instead of U~. 
Figure 8 shows the distributions of (twice) the kinetic energy of 
turbulent fluctuation qZ = u-~ + ~ + ~-~. Turbulent kinetic en- 
ergy in the rotating pipe falls below that in the stationary pipe in 
every radial position. Here, we introduce total turbulent energy 
flux defined by Equation 1 to investigate the rate of reduction in 
turbulent kinetic energy over the cross section. 

Ttef = £ R 2  pq2.U. 2"rr rdr ( l )  

Figure 9 shows the nondimensional total turbulent energy 
flux divided by pU3,'nR 2. With an increase in rotation rate, this 
quantity decreases gradually, and the rate of turbulent energy 
transport in the axial direction is reduced 18% at N = 1. From 
the measurement of the pressure drop in the rotating pipe, one 
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Figure 9 Total turbulent energy flux (uncertainties in Ttet/ 
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of the authors (Imao 1981) deduced that at this Reynolds num- 
ber, a laminarization or retransition phenomenon could be seen 
clearly when the rotation rate was greater than three. Therefore, 
a drastic change in turbulence intensity is expected to occur 
when the rotation rate exceeds three. 

In contrast to turbulence intensity, turbulent shear stresses 
change considerably when the pipe is rotated. Figure 10 shows 
turbulent shear stresses uw and uv. With an increase in rotation 
rate, the uw component, which acts on the plane parallel to the 
pipe wall, decreases in every radial position, and at N = 1, its 
value becomes only about one-third of that without rotation. 
More detailed measurements showed that the reduction in the u-ff 
component was almost linear with an increase in N, as was the 
case in the pressure drop. As for the stress component u-F, which 
acts on the plane perpendicular to the pipe axis, it becomes 
negative at the large radial position, its absolute value increasing 
with an increase in N. A qualitative explanation for why the uv 
component becomes negative is as follows. In the rotating pipe, 
the axial velocity U decreases and the tangential velocity V 
increases, both monotonically, from the pipe center toward the 
pipe wall, as shown in Figure 4. Therefore, the signs of the 
velocity gradients d U / d r  and d V / d r  are opposite. If the fluctua- 
tion in a radial direction is considered, one component of the 
fluctuating velocity (u or v) is positive and another (v or u) 
negative. Consequently, the uv component, which is the cross- 
correlation of axial and tangential velocity fluctuations, is likely 
to be negative. In view of the transport equation of uw, the 
production terms of the shearing stress u---ff can be written 

_ _ o U  V 
- w  2 -  + ~ - -  

Or r 

(Hirai et al. 1988; Kitoh 1991). The results can be interpreted to 
mean that the reduction of the turbulent momentum flux puw is 
caused by the negative production term u v V / r  when the pipe is 
rotated. 

Figure 11 shows the ratio of shear stress magnitude (in the 
plane parallel to the wall) to twice the turbulent kinetic energy, 
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which is commonly called the structure parameter. Here the vw 
component is assumed to be zero, because the flow has been 
fully developed. In comparing the nearly constant value of-ff~/q2 
in the region 0.5 < r / R  < 0.8 obtained here for N = 0 with those 
obtained by Laufer (1954), they were found to be 8% lower. 
Although the cause of this discrepancy is not clear, it may be due 
to a difference in the Reynolds number. With an increase in 
rotation rate, the ratio -ff~/q2 drops remarkably, so that turbu- 
lence structure in the rotating pipe becomes the one where 
momentum transfer by turbulence is suppressed. While this study 
is limited in the rotation rate not exceeding one, in the previous 
study (Imao 1981) a remarkable reduction in the normal stresses 
was found to occur when the rotation rate was greater than 
three. Therefore, it is deduced that the pipe rotation reduces the 
shearing stress mainly when the rotation rate is small and re- 
duces the normal stresses when the rotation rate is large. 

Mix ing  length 

Figure 12 shows the mixing length obtained from the measured 
Reynolds stress uw and the axial velocity gradient dU/dr .  It is 
seen that the reduction in the mixing length is quite remarkable, 
even when the rotation rate is 0.5, and the mixing length de- 
creases still more with an increase in rotation rate. This fact once 
more shows that the momentum transfer by turbulent motion is 
suppressed due to the stabilizing effect of the centrifugal force. 
By analogy with the effects of buoyancy and centrifugal force, 
Bradshaw (1969) has proposed that the mixing length l in swirling 
flows could be expressed as 

l = 10(1 - 13 Ri) (2) 

where 13 is a constant, 10 is the mixing length in a flow with no 
rotation effect, and Ri is the Richardson number defined by 

2 V  O(rV)  

r 2 Or 
Ri = (3) 

or J ~--- - - -~r  ] 
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In the rotating pipe, the value of the angular momentum rV 
increases with the radial distance r, and hence Ri becomes 
positive. The positive value of Ri means that the flow is stabi- 
lized. Using the value of Ri calculated by Equation 3, the values 
of the mixing length at N = 0.5 and 1.0 can be evaluated, and the 
results are compared with the experiments in Figure 12. Here the 
constant 13 in the Monin-Oboukhov relation 2 is taken as 0.7 
and 0.5 for two rotations rates, respectively, which are less than 
the value reported by many workers for a flow through a curved 
or rotating channel (13 = 2 ~ 7). It is seen that the calculated 
values agree with the experiments. 

Turbulent flow in an axially rotating pipe: S. Imao et al. 

Turbulent fluctuations 

Here, velocity fluctuations in each direction are studied in detail. 
Figure 13 shows the time records of the radial velocity fluctua- 
tion and its probability density function at r/R = 0.9. As men- 
tioned earlier, the fluctuating velocity component in the radial 
direction is mot suppressed by the pipe rotation among three 
components, and it can readily be seen from this figure that the 
amplitude of the fluctuation is noticeably decreased at N = 1 and 
that the fluctuation becomes intermittent. The probability den- 
sity function also shows a change. The skewness factor S and the 
flatness factor F of the radial velocity fluctuation are shown in 
Figures 14 and 15, respectively. The values of S, which is nega- 
tive in the stationary pipe, approach zero with an increase in 
rotation rate in every radial position, so that fluctuations with 
large negative value in the radial direction, such as ejection from 
near the wall, are depressed in the rotating pipe. The values of F 
increase with an increase in rotation rate. It is particularly 
remarkable at the large radial position. Therefore, the fluctua- 
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outer region of the pipe. It contains rather periodic large fluctua- 
tion with a long cycle. Its cycle is much greater than that of pipe 
rotation. This fact suggests that the stabilizing effect give rise to 
a large-scale structure, such as spiral waves that appeared in the 
laminar region of the rotating pipe (Imao et al. 1992). However, 
it remains unknown for the present why only the tangential 
velocity fluctuation shows such periodic large fluctuation in the 
outer region of the pipe. 

Figure 17 shows the power spectra El(k), E2(k), and E3(k) of 
the fluctuating velocity component in the axial, tangential, and 
radial direction, respectively. They are obtained by fast-Fourier 
transform (FFT). Here the spectra are normalized by u --~, v --~, and 
w e, respectively, and k is the wave number in the mean flow 
direction; i.e. 

2-~f 
k =  

V/(U 2 q- V 2 ) 

tion in the radial direction is growing intermittent due to the 
stabilizing effect of pipe rotation in the outer region of the pipe. 

Figures 16(a) and (b) show time records of the axial and the 
tangential velocity fluctuation, respectively. Although the reduc- 
tion of the turbulence intensity was not so remarkable at N = 1, 
as mentioned earlier, there is a noticeable change in fluctuating 
pattern. It can be seen in Figure 16(a) that fluctuations with high 
frequency decrease, and those with low frequency increase in the 
central region of rotating pipe. In the outer region of the pipe, 
on the other hand, fluctuations with low frequency decrease, and 
those with high frequency increase somewhat. The same ten- 
dency was seen in the radial velocity fluctuation shown in Figure 
13. These facts can be recognized easily in the power spectra 
shown below. As for the tangential velocity fluctuation shown in 
Figure 16(b), a distinctive fluctuating pattern appears in the 
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Figure 16 (a) Time records of axial velocity fluctuation ( R e :  
20000, z/D= 120). (b) Time records of tangential velocity 
fluctuation (Re= 20000, z/D= 1 20) 

where f is the frequency. In this study, the analyzed frequency is 
f =  0.5 ~ 500 Hz, and the mean velocity U m ~ 0.6 m/s, so that 
wavenumbers, for example, at r / R  = 0.9 and N =  1 become 
k = 5 ~ 5200 1/m. From this figure, it can be seen that in the 
central region of the rotating pipe the power increases slightly in 
the range of lower wave number and decreases slightly in the 
range of middle and higher wave number. In the outer region of 
the pipe, the power in the range of lower wave number decreases 
remarkably except for the tangential component. The increase in 
the power of the tangential component in the range of low wave 
number corresponds to the periodic fluctuation with low fre- 
quency shown in Figure 16(b). 

Anwer and so (1989) studied the energy spectrum of the wall 
shear stress in the flow downstream of the rotating section when 
the flow with solid-like rotation passes into a stationary pipe. 
They found that the equilibrium range with a slope of - 5 / 3  of 
the spectrum increased. Because our study is concerned with the 
fully developed flow in rotating pipe, direct comparison with 
their data are not be allowed. Nevertheless, when the data are 
compared for the equilibrium range, the - 5 / 3  slope seems to be 
unaffected in our study, too. On the other hand, the increase or 
the decrease of the spectrum in the low wave number range is 
remarkable in our study, which causes the equilibrium range 
narrower. This difference may arise from the fact that one flow is 
developed, and the other is damping. 

C o n c l u s i o n s  

An experimental study was made of the turbulent characteristics 
of a fully developed flow in an axially rotating pipe. The results 
are summarized as follows. 
(1) Every component of turbulent fluctuations decreases gradu- 

ally with an increase in rotation rate and the rate of turbu- 
lent energy transport in the axial direction is decreased. 

(2) Turbulent shear stresses are suppressed more strongly than 
turbulent kinetic energy, and the momentum transfer by 
turbulent motion is suppressed in the rotating pipe. 

(3) Mixing length is reduced remarkably in the rotating pipe. Its 
value can be estimated by the use of the coefficient 13, which 
is less than unity, and the Richardson number. 

(4) The skewness factor of radial velocity fluctuation approaches 
0, and the flatness factor of it increases with an increase in 
rotation rate due to the stabilizing effect. 

(5) In the outer region of the rotating pipe, fluctuations with low 
frequency decrease except for the tangential component. A 
rather periodic fluctuation appears with low frequency in the 
tangential velocity fluctuation. 
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Turbulent flow in an axially rotating pipe. S. Irnao et al. 

Figure 17 (a) Power spectra of axial velocity fluctuation 
(Re=20000, z/D=120)(uncertainties in El(k)/u --~ and k are 
+5%). (b) Power spectra of tangential velocity fluctuation 
(Re=2000,  z/D=120)(uncertaint ies in E2(k)/v 2 and k are 
_+5%). (c) Power spectra of radial velocity fluctuation (Re = 
20000, z/D= 120) (uncertainties in E3(k)/w ---E and k are + 5%) 
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